Cuban multitherapeutic alternative for retinitis pigmentosa
Keywords:
retinitis pigmentosa; Cuban treatment; retinal remodeling.Abstract
The objective of the work was to expose the general foundations of the Cuban multitherapeutic alternative for patients suffering from retinitis pigmentosa. A review was carried out that specifies the background of this alternative in Cuba. The characteristics of the retro-orbital fatty tissue used in Cuban microsurgery are highlighted, as an organ that could contribute to the control of various local and systemic functions on the neuroendocrine, energetic and immune systems, placing it as an essential step, in combination with the effects of ozone therapy, electro stimulation, and some supplements used internationally for this disease. The possible influences of this treatment on the neuronal and vascular remodeling processes suffered by retinas with retinitis pigmentosa are proposed, which could facilitate and prolong the survival of cell groups resistant to the global remodeling process in this disease. It is a non-curative alternative, which requires permanent control and monitoring of visual function, aimed especially at patients with vision.
Downloads
References
1. Marc RE, Jones BW, Watt CB, Strettoi E. Neural Remodeling in Retinal Degeneration. Prog Retin Eye Res. 2003 Sep;22(5):607-55. DOI: https://doi.org/10.1016/s1350-9462(03)00039-9
2. Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog. Retin. Eye. Res. 2020;74:100771. DOI: https://doi.org/10.1016/j.preteyeres.2019.07.004
3. Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of neural plasticity in retinal prosthesis. Invest Ophthalmol Vis Sci. 2022;63(11):11. DOI: https://doi.org/10.1167/iovs.63.11.11
4. Palanker D. Electronic retinal prostheses. Cold Spring Harb Perspect Med. 2023 Aug 1;13(8):a041525. DOI: https://doi.org/10.1101/cshperspect.a041525
5. Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, Khorasani MM, et al. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep. 2021 Apr 20;35(3):109022. DOI: https://doi.org/10.1016/j.celrep.2021.109022
6. Rashidi H, Leong YC, Venner K, Pramod H, Fei QZ, Jones OJR, et al. Generation of 3D retinal tissue from human pluripotent stem cells using a directed small molecule-based serum-free microwell platform. Sci Rep. 2022 Apr 22;12(1):6646. DOI: https://doi.org/10.1038/s41598-022-10540-1
7. Nuzbrokh Y, Ragi SD, Tsang SH. Gene therapy for inherited retinal diseases. Ann Transl Med. 2021 Aug;9(15):1278. DOI: https://doi.org/10.21037/atm-20-4726
8. Cheng SY, Punzo C. Update on viral gene therapy clinical trials for retinal diseases. Hum Gene Ther. 2022 Sep;33(17-18):865-78. DOI: https://doi.org/10.1089/hum.2022.159
9. Pérez Aguiar LJ, García Báez O. Estrategia cubana para el tratamiento de la retinosis pigmentaria. Rev Cubana Oftalmol. 2009 [acceso 03/04/2013];22(Supl 2). Disponible en: http://www.bvs.sld.cu/revistas/oft/vol22_sup02_09/oft16309.htm
10. Peláez Molina O. Retinosis pigmentaria: experiencia cubana. 1 ed. La Habana: Editorial Científico Técnica; 1997.
11. Vasco Posada J. Revascularización del segmento anterior y posterior del ojo. Excepta Médica Internacional serie no. 222. México D.F. 8-14 marzo. XXI Congreso Internacional; 1970.
12. Goldsmith HS. Factor angiogénico del omentum majus. Dama. 1984;252:2034-6.
13. Leeson RC, Leeson TS. Histología. 3 ed. La Habana: Editorial Pueblo y Educación; 1977. p. 108-25.
14. Greenway FL. An assay to measure angiogenesis in human fat tissue. Obes Surg. 2007 Apr;17(4). DOI: https://doi.org/10.1007/s11695-007-9089-z
15. Auger C, Kajimura S. Adipose tissue remodeling in pathophysiology. Annu Rev Pathol. 2023 Jan 24:18:71-93. DOI: https://doi.org/10.1146/annurev-pathol-042220-023633
16. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev. 2010 [acceso 12/02/2013];16(4). Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946881/
17. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004 Jun;89(6):2548-56. DOI: https://doi.org/10.1210/jc.2004-0395
18. Li N, Zhao S, Zhang Z, Zhu Y, Gliniak CM, Vishvanath L, et al. Adiponectin preserves metabolic fitness during aging. eLife. 2021 Apr 27;10:e65108. DOI: https://doi.org/10.7554/eLife.65108
19. Aaron N, Kraakman MJ, Zhou Q, Liu Q, Costa S, Yang J, et al. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. eLife 2021 Jun 22;10:e69209. DOI: https://doi.org/10.7554/eLife.69209
20. Hu G, Wang Z, Zhang R, Sun W, Chen X. The Role of Apelin/Apelin Receptor in Energy Metabolism and water homeostasis: A Comprehensive Narrative Review. Front Physiol. 2021 Feb 10;12:632886. DOI: https://doi.org/10.3389/fphys.2021.632886
21. Lin YT, Chen LK, Jian DY, Hsu TC, Huang WC, Kuan TT, et al. Visfatin Promotes Monocyte Adhesion by Upregulating ICAM-1 and VCAM-1 Expression in Endothelial Cells via Activation of p38-PI3K-Akt Signaling and Subsequent ROS Production and IKK/NF-κB Activation. Cell Physiol Biochem. 2019;52(6):1398-1411. DOI: https://doi.org/10.33594/000000098
22. Kurowska P, Mlyczyn´nska E, Dawid M, Jurek M, Klimczyk D, Dupont J, et al. Review: Vaspin (SERPINA12) Expression and Function in Endocrine Cells. Cells. 2021 Jul 6;10(7):1710. DOI: https://doi.org/10.3390/cells10071710
23. Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev. 2021 Sep;70:101414. DOI: https://doi.org/10.1016/j.arr.2021.101414
24. Zhou Z, Sun M, Jin H, Chen H, Ju H. Fetuin-a to adiponectin ratio is a sensitive indicator for evaluating metabolic syndrome in the elderly. Lipids Health Dis. 2020 Apr 6;19:61. DOI: https://doi.org/10.1186/s12944-020-01251-5
25. Milek M, Moulla Y, Kern M, Stroh C, Dietrich A, Schon MR, et al. Adipsin Serum Concentrations and Adipose Tissue Expression in People with Obesity and Type 2 Diabetes. Int J Mol Sci. 2022;23(4):2222. DOI: https://doi.org/10.3390/ijms23042222
26. Moraes-Vieira PM, Yore MM, Sontheimer-Phelps A, Castoldi A, Norseen J, Aryal P, et al. Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through Toll-like receptors 2 and 4. Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31309-18. DOI: https://doi.org/10.1073/pnas.2013877117
27. Bozaoglu K, Curran JE, Stocker CJ, Zaibi MS, Segal D, Konstantopoulos N, et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J. Clin. Endocrinol. Metab. 2010;95(5):2476-85. DOI: https://doi.org/10.1210/jc.2010-0042
28. Brown JJ, Fiaud V. Current Understanding of Adipokines and Adipose Tissue: Roles and Functions. EC Endocrinology and Metabolic Research. 2021 [acceso 11/01/2013]:1-12. Disponible en: https://www.researchgate.net/publication/374388549
29. Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022 Feb 3;185(3):419-46. DOI: https://doi.org/10.1016/j.cell.2021.12.016
30. Pérez LJ, García O, Román C, Menéndez S. Ozonoterapia y electroestimulación en retinosis pigmentaria. Rev. Cubana Oftalmol. 2010 [acceso 11/01/2013];23(1). Disponible en: http://scielo.sld.cu/scielo.php?pid=S0864-21762010000100006&script=sci_arttext
31. Chang K, Enayati S, Cho KS, Utheim TP, Chen DF. Non-invasive electrical stimulation as a potential treatment for retinal degenerative diseases. Neural Regen Res. 2021;16(8):1558-9. DOI: https://doi.org/10.4103/1673-5374.303015
32. Miura G, Ozawa Y, Shiko Y, Kawasaki Y, Iwase T, Fujiwara T, et al. Evaluating the efficacy and safety of transdermal electrical stimulation on the visual functions of patients with retinitis pigmentosa: a clinical trial protocol for a prospective, multicentre, randomised, double-masked and sham-controlled design (ePICO trial). BMJ Open. 2022;12(5):e057193. DOI: https://doi.org/10.1136/bmjopen-2021-057193
33. Pfeiffer RL, Jones BW. Current perspective on retinal remodeling. Implications for therapeutics. Front. Neuroanat. 2022;16:1099348. DOI: https://doi.org/10.3389/fnana.2022.1099348
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Cubana de Oftalmología

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
El contenido de la revista se encuentra accesible sin costo alguno. Está protegido por los términos de la Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional